泰克新一代示波器MSO64采用全新TEK049平臺,不僅實現(xiàn)了4通道同時打開時25GS/s的高采樣率,而且實現(xiàn)了硬件12-bit高垂直分辨率。同時,由于采用了新型低噪聲前端放大ASIC—TEK061,大大降低了噪聲水平,在1mv/div時,實測的本底噪聲RSM值只有58uV,遠遠低于市場同類示波器。這些特性都是MSO64頻譜模式——Spectrum View獲得高動態(tài)、低噪底的強有力保證。
近日Spectrum View又新增了RF_vs_Time Waveform測試功能,使用該功能可以分析信號的瞬態(tài)變化過程,包括信號幅度、頻率和相位的瞬態(tài)變化趨勢,因此通常將其稱為信號的瞬態(tài)過程分析。典型的信號瞬態(tài)過程分析應用場景包括:脈沖信號包絡及脈內調制分析、跳頻信號分析、PLL頻率鎖定時間測試、RF開關切換時間測試、脈沖調制器上升時間測試、RF Module及模擬IQ調制器絕對時延測試等。本文將重點介紹瞬態(tài)分析功能在脈沖、跳頻及PLL頻率鎖定時間測試中的應用。
圖1. MSO64采用全新TEK049平臺和超低噪聲前端TEK061
信號的瞬態(tài)過程分析,實際就是信號的三要素——幅度、頻率和相位隨時間的變化過程分析,不同的信號關注的參數不同,比如跳頻信號尤為關注頻率的變化規(guī)律,脈沖信號比較關注信號包絡及其時間參數等。但無論關注什么參數,總要先得到幅度、頻率和相位的波形。Spectrum View是如何得到這些波形的呢?
Spectrum View采用了圖2所示的DDC (數字下變頻)架構,經對原始采樣點處理,可以得到信號的數字IQ數據,信號幅度、頻率和相位特征均包含于IQ數據中。每一組IQ樣點對應的幅度、頻率和相位時,便可以得到它們隨時間的變化趨勢,從而完成信號瞬態(tài)過程的分析。
圖2. 數字下變頻后得到IQ數據
?。?) 脈沖及跳頻信號測試
對于從事射頻脈沖信號分析測試的工程師而言,通常都要測試脈沖的上升/下降時間、脈寬及周期等時間參數,以及脈內功率平均值及最大值。只有得到射頻脈沖信號的包絡后,才能更加方便地進行這些參數的測試。過去通常使用一個外部包絡檢波器,提取包絡后再使用示波器測試。采用Spectrum View的瞬態(tài)分析功能,無需任何外部附件,即可輕松得到信號的包絡,圖3所示的“C1-M”曲線即為包絡。
值得一提的是,示波器的自動測量功能也可以應用于時域包絡,從而自動完成脈沖信號時間參數及功率參數的測試,而不再需要使用光標測試,從而提高了測試精度?,F(xiàn)代雷達越來越多的采用脈沖壓縮技術,以保證探測距離的同時,提高距離分辨率,其中以線性調頻脈沖(chirp pulse)多見。線性調頻脈沖信號的測試,除了要觀測上述的時間和功率參數,還要對脈內的頻率調制作解調分析,以檢驗調頻帶寬、調頻斜率及線性度。在Spectrum View的瞬態(tài)模式下,可以完成解調分析,如圖3所示的“C1-f”曲線,并支持測試結果的保存,以作進一步的分析。
圖3. RF Chirp Pulse的頻譜、波形、包絡、頻率及相位曲線
類似地,Spectrum View還可以應用于跳頻信號的分析,觀測的依然是頻率解調曲線。得到跳頻圖案后,可以進一步分析每個頻點的駐留時間以及相鄰頻點之間的切換時間等參數。
圖4. Spectrum View的瞬態(tài)模式可以直接解調出跳頻圖案
?。?) PLL頻率鎖定時間測試
基于PLL技術的頻率綜合器應用極其廣泛,無論是通信還是雷達系統(tǒng)中,PLL頻綜都是必不可少的。因為PLL頻綜具有非常高的頻率穩(wěn)定度,相噪性能非常優(yōu)異,這些都是保證通信和雷達系統(tǒng)性能的重要因素。PLL是一個負反饋控制系統(tǒng),圖5給出了簡要架構示意圖,從閉環(huán)傳輸特性看,PLL具有一定的環(huán)路帶 寬,這主要取決于環(huán)路上的低通濾波器——Loop filter。環(huán)路帶寬不僅決定了輸出信號的相噪性能,而且也決定了PLL鎖定的速度。相噪性能和鎖定速度是PLL頻綜開發(fā)工程師必須要折中考慮的兩個參數,因此在調試階段也是必測的兩個參數。
圖5. PLL頻率綜合器架構示意圖
對于鎖定時間的測試,傳統(tǒng)測試方法是直接將PLL輸出的射頻信號饋入頻譜儀,然后在zero span模式下設置觸發(fā)觀測射頻信號的包絡。但是這種方式有兩個缺點:① 以觸發(fā)位置為時間參考點,而PLL在觸發(fā)時刻之前已經開始工作,無法準確標定鎖定時間;② 由于這種方法是從包絡上判定是否鎖定完成,測試誤差會很大。因為信號的包絡與頻譜儀設置的RBW關系很大,存在這樣的情況——即使頻率沒有完全鎖定,但是信號依然可以完全通過RBW filter,從而得到正常的包絡信號。此時,標定的鎖定時間會偏小,而不能正確反映PLL的性能。
使用Spectrum View的瞬態(tài)分析功能可以輕而易舉地解決這個問題,測試連接如圖6所示,待測PLL電路除了將射頻輸出連接至示波器之外,同時提供一路同步觸發(fā)信號,以此作為時間基準。在瞬態(tài)分析模式下,調出Frequency_vs_TIme波形,當頻率鎖定后,接近一條直線,觀測在哪個時刻頻率鎖定成功 (比如,定義頻率誤差在標稱頻率的±5%以內即認為鎖定成功),從而準確測試鎖定時間。
圖6. PLL頻率鎖定時間測試連接示意圖
圖7. PLL頻率鎖定時間實測結果
?。?) 射頻開關切換時間測試
作為射頻電路中常用的器件,開關通常用于多個射頻鏈路之間的切換,從而實現(xiàn)分時工作。比如智能手機基本都支持多種無線通信制式,各種制式之間的切換就是通過射頻前端的開關實現(xiàn)的。這類射頻開關為單刀多擲開關,通常除了關注開關的插損、隔離度、駐波比等參數外,還要關注開關的切換時間,以保證各個鏈路之間嚴格的時序關系。
如何測試開關的切換時間呢?圖8給出了測試連接示意圖,示波器是整個測試的核心設備,此外還需要一臺信號源,用于給開關提供射頻激勵信號。測試過程中,信號源提供CW信號饋入開關,控制電路在控制開關切換的同時,也給示波器提供一路觸發(fā)信號作為時間參考。為了準確測試切換時間,需要得到開關輸出的射頻信號的包絡,在示波器側通過比較外觸發(fā)信號與包絡信號之間的延遲,便可以確定切換時間。
示波器通常借助于外部的包絡檢波器測試信號包絡,但是這會引入額外的時延,從而影響測試精度。相比之下,Spectrum View可以直接顯示射頻信號包絡 (Magnitude_vs_TIme),測試更準確、應用更方便。
圖8. 射頻開關切換時間測試連接示意圖
?。?) 脈沖調制器上升時間測試
脈沖調制器是脈沖體制雷達系統(tǒng)中的關鍵部件,可經外部控制產生具有快速上升/下降沿及高開關比的射頻脈沖信號。脈沖調制器往往采用單刀單擲射頻開關實現(xiàn),其決定了能夠產生的射頻脈沖的上升/下降時間及開關比。實際應用中,往往希望能夠產生邊沿盡量快的射頻脈沖,這樣才能夠生成更窄的脈沖,提高距離分辨率。
值得一提的是,雖然射頻開關可以當做脈沖調制器,但是其上升時間并不是前面介紹的切換時間。開關的切換時間受限于其控制電路的響應時間,而上升時間則取決于開關支持的帶寬。
脈沖調制器上升時間測試連接如圖4所示,系統(tǒng)需要提供射頻CW信號和用于控制調制器的基帶脈沖信號。為了能夠準確測試上升時間,推薦使用一臺任意波信號發(fā)生器 (AWG) 產生基帶脈沖信號,因為AWG的帶寬足夠大,所產生的脈沖信號上升時間遠遠小于脈沖調制器的上升時間。
CW信號經過脈沖調制器轉換為射頻脈沖信號,然后饋入示波器進行測試。在Spectrum View模式下,直接調出“Magnitude_vs_TIme”,使用示波器的自動測量功能便可以精確測出10%~90%或者20%~80%的上升時間。
圖9. 脈沖調制器上升時間測試連接示意圖
(5) RF module絕對時延測試
在一些相參多通道應用場合,為了保證各通道之間的時間同步性,對通道上射頻模塊 / 部件的絕對時延提出了較高要求,比如功率放大器 、上下變頻器、模擬IQ調制器等,因此需要對這些模塊的絕對時延進行標定。
眾所周知,矢量網絡分析儀具有測試群時延 (Group delay) 的功能,但是群時延并不是絕對時延。只有當相頻特性呈現(xiàn)理想線性關系時,群時延才是絕對時延。顯然,這種理想器件是不存在的。而且實際測試中除了關注絕對時延,可能還會涉及到射頻脈沖信號經過這類器件后的上升/下降時間等參數測試,因此,示波器是這類測試的理想選擇。
絕對時延測試過程中,系統(tǒng)給待測件饋入一個射頻脈沖信號,同時輸出一路同步觸發(fā)信號作為時間參考,在Spectrum View模式下調出脈沖信號的包絡后,使用示波器的自動測量功能便可以確定絕對時延。對于高帶寬應用場合,通道所采用的也都是寬帶射頻模塊,為了能夠測試這種場合下的參數,建議測試時也采用寬帶信號,圖10便采用了泰克公司的任意波信號發(fā)生器提供高帶寬的線性調頻脈沖信號。
圖10. 射頻模塊絕對時延測試連接示意圖
模擬IQ調制器的絕對時延測試,與上述測試方法類似,只是需要給待測件提供模擬I信號和Q信號,測試連接如圖11所示。為了準確測試時延,依然采用射頻脈沖信號。最簡單的射頻脈沖在脈內是恒定的載波,對應的基帶IQ信號只有I路有信號,Q路信號為0。測試時建議采用線性調頻脈沖信號,I和Q路均有信號,可以使得調制器的I和Q兩個支路分別工作起來,以模擬其真實工作狀態(tài)。
與功率放大器等射頻模塊的絕對時延測試類似,模擬IQ調制器的時延測試也需要時間基準信號,由圖11中所示的任意波信號發(fā)生器提供。Spectrum View測出射頻脈沖信號的包絡后,使用自動測量功能便可以測出包絡信號與基準信號之間的時間差,從而精確標定絕對時延,圖12給出了模擬IQ調制器時延的實測結果。
圖11. 模擬IQ調制器絕對時延測試連接示意圖
圖12. 模擬IQ調制器絕對時延實測結果
加入3月27日14:30-15:30泰克直播大講堂之全新時頻分析技術,您將聆聽到關于Spectrum View特性和應用場景講述,還有答疑和抽獎環(huán)節(jié),https://info.tek.com.cn/cn-2020-mso5-and-mso6.html,課堂見。