131 1300 0010
開關(guān)電源
當(dāng)前位置: 首頁>> 電源技術(shù)>>開關(guān)電源>>
  • 導(dǎo)航欄目
  • 逆變電源
  • 開關(guān)電源
  • 電機(jī)伺服
  • 其他電源
  • 開關(guān)電源的EMI仿真設(shè)計(jì)
    開關(guān)電源的EMI仿真設(shè)計(jì)
  • 開關(guān)電源的EMI仿真設(shè)計(jì)
  •   發(fā)布日期: 2019-05-27  瀏覽次數(shù): 2,094

    1 引言

    隨著開關(guān)頻率的提高以及功率密度的增加,開關(guān)電源內(nèi)部的電磁環(huán)境越來越復(fù)雜,其電磁兼容問題成為電源設(shè)計(jì)中的一大重點(diǎn),同時(shí)也成為電源設(shè)計(jì)工作的一大難點(diǎn)。常規(guī)設(shè)計(jì)方法中,依靠經(jīng)驗(yàn)設(shè)計(jì)處理EMC問題,樣機(jī)建立完畢之后才能對(duì)EMC問題做最后的考慮。傳統(tǒng)的EMC的補(bǔ)救辦法只能增加額外的元器件,而增加元件有可能影響原始的控制環(huán)帶寬,造成重新設(shè)計(jì)整個(gè)系統(tǒng)的最壞情況,增加了設(shè)計(jì)成本。為了避免出現(xiàn)這樣的情況,需要在設(shè)計(jì)過程中考慮EMC的問題,對(duì)開關(guān)電源的EMI進(jìn)行一定精度的分析和預(yù)測,并根據(jù)干擾產(chǎn)生的機(jī)理及其在各頻帶的分布情況改進(jìn)設(shè)計(jì),降低EMI水平,從而降低設(shè)計(jì)成本。

     

    2 開關(guān)電源EMI特點(diǎn)及分類

    對(duì)開關(guān)電源傳導(dǎo)電磁干擾進(jìn)行預(yù)測,首先需要明確其產(chǎn)生機(jī)理以及噪聲源的各項(xiàng)特性。由于功率開關(guān)管的高速開關(guān)動(dòng)作,其電壓和電流變化率都很高,上升沿和下降沿包含了豐富的高次諧波,所以產(chǎn)生的電磁干擾強(qiáng)度大;開關(guān)電源的電磁干擾主要集中在二極管、功率開關(guān)器件以及與其相連的散熱器和高頻變壓器附近;由于開關(guān)管的開關(guān)頻率從幾十kHz到幾MHz,所以開關(guān)電源的干擾形式主要是傳導(dǎo)干擾和近場干擾。其中,傳導(dǎo)干擾會(huì)通過噪聲傳播路徑注入電網(wǎng),干擾接入電網(wǎng)的其他設(shè)備。

    開關(guān)電源傳導(dǎo)干擾分為2大類。

    1)差模(DM)干擾。DM 噪聲主要由di/dt引起,通過寄生電感,電阻在火線和零線之間的回路中傳播,在兩根線之間產(chǎn)生電流Idm,不與地線構(gòu)成回路。

    2)共模(CM)干擾。CM 噪聲主要由dv/dt引起,通過PCB的雜散電容在兩條電源線與地的回路中傳播,干擾侵入線路和地之間,干擾電流在兩條線上各流過二分之一,以地為公共回路;在實(shí)際電路中由于線路阻抗不平衡,使共模信號(hào)干擾會(huì)轉(zhuǎn)化為不易消除的串?dāng)_干擾。

    3 開關(guān)電源EMI的仿真分析

    從理論上來講,無論是時(shí)域仿真還是頻域仿真,只要建立了合理的分析模型,其仿真結(jié)果都能正確反映系統(tǒng)的EMI量化程度。

    時(shí)域仿真方法需要建立變換器中包含所有元件參數(shù)的電路模型,利用PSPICE或Saber軟件進(jìn)行仿真分析,使用快速傅里葉分析工具得到EMI的頻譜波形,這種方法在DM 噪聲的分析中已經(jīng)得到了驗(yàn)證。然而開關(guān)電源中的非線性元件如MOSFETIGBT 等半導(dǎo)體器件,其非線性特性和雜散參數(shù)使模型非常復(fù)雜,同時(shí)開關(guān)電源電路工作時(shí)其電路拓?fù)浣Y(jié)構(gòu)不斷改變,導(dǎo)致了仿真中出現(xiàn)不收斂的問題。在研究CM 噪聲時(shí),必須包含所有的寄生元件參數(shù),由于寄生參數(shù)的影響,FFT結(jié)果和實(shí)驗(yàn)結(jié)果很難吻合;開關(guān)功率變換器通常工作在很大的時(shí)間常數(shù)范圍內(nèi),主要包括3組時(shí)間常數(shù):與輸出端的基本頻率有關(guān)的時(shí)間常數(shù)(幾十ms);與開關(guān)元件的開關(guān)頻率有關(guān)的時(shí)間常數(shù)(幾十μs);與開關(guān)元件導(dǎo)通或關(guān)斷時(shí)的上升時(shí)間和下降時(shí)間有關(guān)的時(shí)間常數(shù)(幾ns)。

    正因如此,在時(shí)域仿真中,必須使用非常小的計(jì)算步長,并且需要用很長時(shí)間才能完成計(jì)算;另外,時(shí)域方法得到的結(jié)果往往不能清晰地分析電路中各個(gè)變量對(duì)干擾的影響,不能深層解釋開關(guān)電源的EMI行為,而且缺乏對(duì)EMI機(jī)理的判斷,不能為降低EMI給出明確的解決方案。

    頻域仿真是基于噪聲源和傳播途徑阻抗模型基礎(chǔ)上的分析方法。利用LISN為噪聲源提供標(biāo)準(zhǔn)負(fù)載阻抗。如圖1所示,從LISN看過去,整個(gè)系統(tǒng)可以簡化成噪聲源、噪聲路徑和噪聲接收器(LISN)。頻域方法可以大大降低仿真計(jì)算的時(shí)間,一般不會(huì)出現(xiàn)計(jì)算結(jié)果不收斂的情況。

    開關(guān)電源的EMI仿真設(shè)計(jì)

    圖1 噪聲源與傳播路徑概念

    圖1中,噪聲路徑包括PCB傳導(dǎo)、耦合路徑,散熱片電容耦合路徑,變壓器耦合路徑等。

    4 基于頻域方法的SMPS等效電路模型

    對(duì)開關(guān)電源進(jìn)行頻域仿真,首先要建立開關(guān)電源的頻域仿真模型。開關(guān)電源EMI頻域預(yù)測的重點(diǎn)是對(duì)噪聲路徑的建模,其中包括:無源器件的高頻模型;PCB及結(jié)構(gòu)寄生參數(shù)的抽取。

    在考慮無源器件、PCB及結(jié)構(gòu)寄生參數(shù)的基礎(chǔ)上,建立開關(guān)電源集中參數(shù)的電路模型,可以通過計(jì)算或仿真得到該電路的阻抗,諧振點(diǎn)等,從而為降低EMI提供有力的依據(jù)。

    由于差模噪聲和共模噪聲的傳播路徑不同,有必要對(duì)DM 傳播路徑和CM 傳播路徑分別建模。這樣可以更好地分析各種干擾的特點(diǎn),而且還可以為設(shè)計(jì)濾波器提供有力的依據(jù)。

    4.1 噪聲源的模型建立

    由于需要分別對(duì)DM 噪聲和CM 噪聲進(jìn)行分析,所以對(duì)DM 噪聲源和CM 噪聲源也需要分別建模。M.Nave在文獻(xiàn)[3]中提出使用電流源作為DM 噪聲源,使用電壓源作為CM 噪聲源的方法,就是因?yàn)镈M 噪聲主要由di/dt引起,而CM 噪聲則主要由dv/dt引起。文獻(xiàn)[4]在此基礎(chǔ)上對(duì)CM 噪聲源進(jìn)行了改進(jìn),考慮了電壓過沖和下沖,并且在線路阻抗近似平衡的情況下,利用DM 電流源和一個(gè)電壓源來表示CM 噪聲源(如圖2所示)。

    開關(guān)電源的EMI仿真設(shè)計(jì)

    圖2 共模噪聲源的表示

    文獻(xiàn)基本都是用梯形波來表示噪聲源的,但實(shí)際中并不是每個(gè)電路中的開關(guān)器件的波形都能很好地用梯形波近似,圖3所示即為一個(gè)反激電源開關(guān)管的電流電壓波形,除了梯形波之外,還有電流尖峰,電壓過沖和下沖等分量,會(huì)導(dǎo)致噪聲源的頻譜與梯形波有一定的不同。所以不能盲目地使用梯形波來表征噪聲源,而是需要對(duì)電路進(jìn)行分析或者仿真,從而得到開關(guān)器件的電流或電壓波形,基于此波形再對(duì)噪聲源進(jìn)行建模,這樣才能更精確地反映開關(guān)電源的電磁干擾。

    開關(guān)電源的EMI仿真設(shè)計(jì)

    圖3 某反激電源開關(guān)管的電流電壓波形

    4.2 無源器件的高頻模型

    在EMI的頻率范圍內(nèi),常用的無源器件都不能再被認(rèn)為是理想的,他們的寄生參數(shù)嚴(yán)重影響著其高頻特性。

    在各種無源器件中,電阻、電感和電容的高頻等效寄生參數(shù)可以用高頻阻抗分析儀測得。表1所示為各種無源器件的理想模型和高頻等效模型。

    表1 電阻、電容、電感及變壓器的高頻等效模型

    開關(guān)電源的EMI仿真設(shè)計(jì)

    對(duì)于高頻變壓器,提出可以使用有限元分析方法和實(shí)驗(yàn)測量法求取,從而可以得到漏感、原副邊自電容和原副邊互電容這些引起電路震蕩、增加傳導(dǎo)EMI的主要參數(shù)。使用ansoft公司的Maxwell仿真軟件,可以通過輸入變壓器的繞組和磁芯的幾何尺寸與電磁參數(shù),利用有限元分析的方法得到各寄生參數(shù)。實(shí)驗(yàn)測量法的總體思路就是在所建立模型的基礎(chǔ)上,推導(dǎo)出變壓器在不同工作狀態(tài)下的阻抗特性(如原副邊繞組開路,短路的不同組合)方程,然后測量這些狀態(tài)下的阻抗,從而得到漏感和寄生電容。

    4.3 PCB及結(jié)構(gòu)寄生參數(shù)的提取

    除了元器件選取、電路及其結(jié)構(gòu)設(shè)計(jì),PCB的布局、布線設(shè)計(jì)、線路板加工對(duì)電磁兼容會(huì)造成很大影響,是一個(gè)非常重要的設(shè)計(jì)環(huán)節(jié)。由于開關(guān)電源的PCB布線基本上都是依據(jù)經(jīng)驗(yàn)手工布置,有很大的隨意性,這就增加了PCB分布參數(shù)提取的難度。PCB的寄生參數(shù)會(huì)造成開關(guān)電源噪聲傳播途徑的阻抗變化,影響控制器對(duì)開關(guān)電源輸出電壓電流的控制作用。PCB的布局不合理還會(huì)形成開關(guān)電源向外輻射電磁干擾的途徑,同時(shí)也會(huì)通過該途徑吸收外界電磁干擾,從而降低開關(guān)電源的電磁干擾抗擾度。所以PCB的布局布線是開關(guān)電源EMC設(shè)計(jì)中極為重要的環(huán)節(jié)。

    對(duì)于傳導(dǎo)干擾,寄生參數(shù)的提取精確度是通過仿真有效預(yù)測EMI水平的關(guān)鍵。盡管對(duì)于結(jié)構(gòu)簡單的元件來說,寄生參數(shù)是很容易計(jì)算的,但是對(duì)于復(fù)雜結(jié)構(gòu)中的元件來說,并不是那么容易就能得到寄生參數(shù),例如多層板和直流母線的寄生參數(shù)。

    為了建立開關(guān)電源PCB的高頻模型,需要對(duì)PCB的結(jié)構(gòu)寄生參數(shù)進(jìn)行抽取。提取PCB寄生參數(shù)的方法有很多,其中TDR(時(shí)域反射)方法可以在不知道實(shí)際幾何形狀的情況下對(duì)寄生電感和寄生電容進(jìn)行提取,但是TDR(時(shí)域反射)方法需要時(shí)域反射儀,用于樣機(jī)建成后,這就使開發(fā)成本大大增加,而且TDR方法不能尋找到復(fù)雜結(jié)構(gòu)中的耦合效應(yīng);然而FEA(有限元分析)方法則可以克服這一缺點(diǎn),用于樣機(jī)建成前。利用FEA工具可以準(zhǔn)確地得到PCB的寄生參數(shù),并能考慮復(fù)雜幾何結(jié)構(gòu)的耦合情況。

    有很多對(duì)PCB結(jié)構(gòu)進(jìn)行寄生參數(shù)抽取軟件,如InCa,SIwave,Q3D 等,分別用不同的方法對(duì)PCB的寄生參數(shù)進(jìn)行計(jì)算和提取,如部分元等效電路方法、有限元分析方法、有限元分析方法和矩量法結(jié)合的方法等。其中InCa軟件只能計(jì)算分布電感,不適合計(jì)算分布電容,不宜處理共模干擾的仿真分析;SIwave軟件提取出來的是電路的S參數(shù),不能清晰地反映PCB中的耦合情況及其對(duì)開關(guān)電源EMI的影響;Q3D 軟件利用FEA 和MOM結(jié)合的方法求解電磁場,可以得到PEEC部分元等效電路,也可以得到PCB上各導(dǎo)體的互感互容,可以清晰地分析各種情況下PCB結(jié)構(gòu)對(duì)開關(guān)電源EMI的影響。

    J.Ekman提出了基于寄生參數(shù)矩陣的等效電路的建立方法,即把所有互感、互容等效成受控的電壓源,與自感、自容連接(相當(dāng)于把所有互感、互容對(duì)電路的影響等效到受控電壓源上),從而建立等效電路模型。圖4所示為任意兩個(gè)節(jié)點(diǎn)間的等效電路模型。

    開關(guān)電源的EMI仿真設(shè)計(jì)

    圖4 任意兩節(jié)點(diǎn)間的等效電路模型

    圖4中:

    開關(guān)電源的EMI仿真設(shè)計(jì)

    式中:Lpmn為m和n兩導(dǎo)線間的互感。

    雖然這樣可以提高仿真的準(zhǔn)確性,但是加大了分析的計(jì)算量,可以通過忽略一些對(duì)結(jié)果影響不是很大的互感、互容,減少計(jì)算量。

    散熱片與開關(guān)管之間會(huì)有電容效應(yīng),噪聲可以通過該效應(yīng)在電路和地之間進(jìn)行傳播,文獻(xiàn)【9】對(duì)散熱片在開關(guān)電源傳導(dǎo)和輻射干擾中的影響作了詳細(xì)的闡述。

    還有其他的在空間通過電感或電容耦合傳到接收器的噪聲,不可以忽略。

    模型建立之后,就可以使用仿真軟件對(duì)開關(guān)電源EMI進(jìn)行仿真,得到開關(guān)電源傳導(dǎo)EMI的頻譜波形,通過分析波形可以定位開關(guān)電源EMI的問題所在,進(jìn)而通過解決該問題而降低EMI。

    5 降低EMI的設(shè)計(jì)方法及策略

    降低開關(guān)電源EMI,需要從噪聲源和傳播路徑入手。首先,對(duì)于噪聲源,可以通過加吸收電路,減小di/dt和dv/dt來降低其EMI水平,但是這樣一來,開關(guān)電源的效率將會(huì)受到影響,需要對(duì)這兩者進(jìn)行一定的取舍。

    然后是對(duì)傳播路徑進(jìn)行改進(jìn)。改進(jìn)的目的是要使傳播路徑對(duì)于干擾的阻抗增大,阻斷其向接收器的傳播,而對(duì)于電網(wǎng)提供的功率,阻抗要小,從而增加開關(guān)電源的工作效率。

    選取元件時(shí)需要盡量選取寄生參數(shù)影響小的元件,比如電容的ESR和ESL要盡量小,電感的寄生電容要小等。在PCB以及散熱片的位置等設(shè)計(jì)過程中,也要盡可能增大對(duì)干擾傳播路徑的阻抗,使噪聲盡可能少的通過PCB路徑傳導(dǎo)到接收器。

    如果以上所有降低EMI的措施都完成了還沒有達(dá)到EMC的標(biāo)準(zhǔn),就可以根據(jù)前面仿真分析得到的差模和共模干擾的波形對(duì)濾波器進(jìn)行設(shè)計(jì)。在設(shè)計(jì)濾波器的時(shí)候,也同樣要注意元件的布局,還有PCB寄生參數(shù)對(duì)濾波器阻抗的影響,其本質(zhì)也是增大對(duì)干擾的阻抗,使干擾無法通過傳播路徑。開關(guān)電源設(shè)計(jì)流程如圖5所示。

    開關(guān)電源的EMI仿真設(shè)計(jì)

    圖5 開關(guān)電源設(shè)計(jì)流程

    6 結(jié)論

    綜上所述,目前對(duì)于開關(guān)電源傳導(dǎo)干擾的預(yù)測方法有時(shí)域方法和頻域方法兩種,由于時(shí)域方法需要使用很小的計(jì)算步長,需要花費(fèi)很長的計(jì)算時(shí)間,容易出現(xiàn)仿真結(jié)果不收斂的問題。同時(shí),時(shí)域仿真得到的結(jié)果往往不能清晰地分析電路中各個(gè)變量對(duì)干擾的影響。而頻域仿真物理意義清晰,更容易判斷各參數(shù)對(duì)EMI的影響,能夠?yàn)榻档虴MI提供有力依據(jù),關(guān)鍵問題是建立合理的干擾源和傳播途徑的頻域模型。

    對(duì)于PCB寄生參數(shù)的提取,有很多軟件,這些軟件適合的領(lǐng)域不盡相同,可以根據(jù)任務(wù)需求進(jìn)行選擇。

    對(duì)于高頻等效電路模型,可以通過電路分析的方法忽略一些對(duì)EMI影響很小的互感、互容等因素,既減少計(jì)算量,又不會(huì)降低過多的計(jì)算精度。

    降低EMI的主要方法就是使傳播路徑對(duì)電磁干擾的阻抗增大,使電磁干擾盡可能少的通過傳播路徑,對(duì)于濾波器設(shè)計(jì)可以分別根據(jù)DM 噪聲和CM 噪聲的仿真結(jié)果進(jìn)行設(shè)計(jì),并且需要特別注意濾波器的元件布局,好的布局能夠更好地抑制噪聲的傳播。


  • ·上一篇:
    ·下一篇:
  • 其他關(guān)聯(lián)資訊
    深圳市日月辰科技有限公司
    地址:深圳市寶安區(qū)松崗鎮(zhèn)潭頭第二工業(yè)城A區(qū)27棟3樓
    電話:0755-2955 6626
    傳真:0755-2978 1585
    手機(jī):131 1300 0010
    郵箱:hu@szryc.com

    深圳市日月辰科技有限公司 版權(quán)所有:Copyright?2010-2023 xbquwah.cn 電話:13113000010 粵ICP備2021111333號(hào)