太陽(yáng)能光伏陣列似乎每天都變得更便宜、更高效,這使得它們?cè)诳稍偕?或遠(yuǎn)程供電應(yīng)用中越來(lái)越實(shí)用。盡管如此,任何給定陣列產(chǎn)生的電壓隨負(fù)載、入射光強(qiáng)度和溫度而顯著變化,因此通常需要某種形式的調(diào)節(jié)。
陣列性能可以顯著受益于最大功率點(diǎn)跟蹤 (MPPT) 和開關(guān)模式調(diào)節(jié),如早期設(shè)計(jì)理念所示:太陽(yáng)能陣列控制器不需要乘法器來(lái)最大化功率
但對(duì)于小型陣列,MPPT 和開關(guān)模式電路的額外復(fù)雜性似乎不合理,因此線性調(diào)節(jié)成為更簡(jiǎn)單和更好的選擇。本設(shè)計(jì)理念針對(duì)此類系統(tǒng),重點(diǎn)關(guān)注串聯(lián)穩(wěn)壓器拓?fù)渑c并聯(lián)穩(wěn)壓器拓?fù)涞南鄬?duì)優(yōu)勢(shì)。
用您獨(dú)特的設(shè)計(jì)讓工程界驚嘆: 設(shè)計(jì)理念提交指南
讓我們從一個(gè)假設(shè)的小型太陽(yáng)能電池陣列開始,該陣列針對(duì) 12W 輸出(在完全陽(yáng)光直射下 ~1kW/m 2)、1A 和 12V、20% 的光電轉(zhuǎn)換效率進(jìn)行了優(yōu)化,因此標(biāo)稱面積為 ~0.06m 2 = ~ 100 英寸2 . 然后添加線性調(diào)節(jié)電路,以在負(fù)載電流從 0 到 1A 變化時(shí)保持恒定的 12V 輸出。
圖 1說明了一個(gè)合適的串聯(lián)穩(wěn)壓器,而圖 2是一個(gè)類似的并聯(lián)拓?fù)洹楸阌诒容^并聯(lián)穩(wěn)壓與串聯(lián)穩(wěn)壓的優(yōu)勢(shì),兩種穩(wěn)壓器均采用基于古老的 LM10 組合基準(zhǔn) +?運(yùn)算放大器的相同檢測(cè)/控制電路。
圖 1適用于小型太陽(yáng)能電池陣列的串聯(lián)線性穩(wěn)壓器。
圖 2適用于小型太陽(yáng)能電池陣列的并聯(lián)線性穩(wěn)壓器。
如圖所示,LM10 200mV 內(nèi)部基準(zhǔn)(引腳 1 + 8)通過提供輸入偏置電流補(bǔ)償?shù)?R1 = R2R3/(R2 + R3) 驅(qū)動(dòng)運(yùn)算放大器反相輸入(引腳 2),而同相輸入(引腳3) 通過 60:1 R2:R3 分壓器連接到 Vout (Vsetpoint = 200mV(R3/R2 + 1))。因此,運(yùn)算放大器輸出(引腳 6)將在
Vout < Vsetpoint 并且當(dāng) Vout > Vsetpoint 時(shí)為正。
在圖 1(串聯(lián)穩(wěn)壓器)中,引腳 6 通過限流 R4 連接到 D45 PNP 傳輸功率晶體管的基極,當(dāng) Vout < Vsetpoint 時(shí)增加驅(qū)動(dòng)和負(fù)載電流,當(dāng) Vout > Vsetpoint 時(shí)減小它們。在圖 2(并聯(lián)穩(wěn)壓器)中,引腳 6 驅(qū)動(dòng) D44 NPN 并聯(lián)晶體管的基極,當(dāng) Vout > Vsetpoint 時(shí)將更多的陣列電流路由到地,而在 Vout > Vsetpoint 時(shí)則更少。
那么,哪種類型的調(diào)節(jié)(并聯(lián)或串聯(lián))更好,何時(shí)以及為什么?
為了回答這個(gè)一般性問題,將考慮三類特定的電路性能:
穩(wěn)壓器效率(在峰值需求時(shí)提供給負(fù)載的陣列功率的最大部分)
熱管理挑戰(zhàn)(主要由功率晶體管散熱器所需的熱容量決定,反過來(lái)又由最大晶體管功耗決定)
調(diào)節(jié)類型對(duì)太陽(yáng)能電池陣列溫度的影響,從而對(duì)陣列轉(zhuǎn)換效率的影響
調(diào)節(jié)器效率
當(dāng) D45 傳輸晶體管導(dǎo)通并接近飽和時(shí),串聯(lián)拓?fù)涞臐M載 (1A) 效率受三個(gè)因素的限制:
LM10 和 R2R3 分壓器的電流消耗 = 312uA(典型值)
D45 的基本驅(qū)動(dòng)@Ic = 1A = 10mA(典型值)
D45 的飽和壓降 @Ic = 1A = 100mV(typ)
將這些損失相加,估計(jì)典型效率因子為 98%。
相比之下,在分流拓?fù)渲?,D44 功率晶體管在滿載時(shí)完全關(guān)閉,陣列和輸出之間的連接是直接的,只留下上述三個(gè)因素中的一個(gè)來(lái)競(jìng)爭(zhēng)輸出電流:#1——312uA LM10 電流。這導(dǎo)致近乎完美的 99.97% 效率。
結(jié)論:就效率而言,串聯(lián)非常好,但并聯(lián)(實(shí)際上)是完美的。請(qǐng)注意,該結(jié)果與串聯(lián)穩(wěn)壓效率通常高于并聯(lián)穩(wěn)壓效率的普遍預(yù)期不同。
熱管理挑戰(zhàn)
D45 系列傳輸晶體管的最大熱耗散約為 1.33W,發(fā)生在 0.66A 負(fù)載電流時(shí),可由小型夾式散熱器容納。的D44并聯(lián)晶體管的最大功耗,相比之下,發(fā)生在零負(fù)載電流和大得多:?4.5W,需要相當(dāng)大和笨重的擠壓片,以限制可接受的溫度上升(?40 ?和自然對(duì)流的條件下C)輻射。
根據(jù)這個(gè)標(biāo)準(zhǔn),串聯(lián)調(diào)節(jié)是明顯的贏家,(酷)因子大于 3。
調(diào)節(jié)方式對(duì)太陽(yáng)能電池陣列溫度的影響
太陽(yáng)能電池陣列吸收的總太陽(yáng)能只能通過兩種方式: 1. 轉(zhuǎn)換為電能輸送到連接的電路;或 2. 陣列散發(fā)的熱量。熱力學(xué)第一定律規(guī)定后兩者之和必須始終完全等于前者。因此,連接的負(fù)載接受的電力越少,陣列必須以熱量的形式釋放的電力就越多,這不可避免地會(huì)增加陣列的溫度。
串聯(lián)調(diào)節(jié)會(huì)導(dǎo)致大部分未被負(fù)載接受的功率被陣列耗散(記住 D45 保持多冷),而并聯(lián)調(diào)節(jié)則耗散 D44 晶體管和 R4 中被拒絕的功率。因此,在部分負(fù)荷,有20%的效率分流調(diào)節(jié)面板運(yùn)行冷卻器比串聯(lián)調(diào)節(jié)面板,由多達(dá)10 ? C.太陽(yáng)能陣列轉(zhuǎn)換效率0.3%與溫度的上升下降到0.4%/ ? C,使得在某些情況下,并聯(lián)調(diào)節(jié)面板的效率可能比串聯(lián)調(diào)節(jié)面板高 3% 或 4%。