作者:ADI 公司 | Jellenie Rodriguez,應(yīng)用工程師 Mary McCarthy,應(yīng)用工程師
簡(jiǎn)介
本文討論基于電阻溫度檢測(cè)器(RTD)的溫度測(cè)量系統(tǒng)的歷史和設(shè)計(jì)挑戰(zhàn)。本文還涉及RTD選型和配置上的權(quán)衡。最后,本文詳細(xì)介紹了RTD系統(tǒng)優(yōu)化和評(píng)估。
RTD溫度測(cè)量為什么很重要?
溫度測(cè)量在很多不同的終端應(yīng)用中發(fā)揮著重要作用,例如工業(yè)自動(dòng)化、儀器儀表、狀態(tài)監(jiān)控(CbM)和醫(yī)療設(shè)備。不管監(jiān)控環(huán)境條件或校正系統(tǒng)的漂移性能如何,高準(zhǔn)確度和高精度都非常重要。有多種類型的溫度傳感器可以使用,例如熱電偶、電阻溫度檢測(cè)器(RTD)、電子帶隙傳感器和熱敏電阻。具體選擇何種溫度傳感器及如何設(shè)計(jì),取決于所測(cè)量的溫度范圍和所需的精度。對(duì)于-200°C至+850°C之間的溫度,RTD可提供高精度和良好穩(wěn)定性的出色特性組合。
溫度測(cè)量的主要挑戰(zhàn)有哪些?
挑戰(zhàn)包括:
RTD選型指南
RTD概述
RTD傳感器的阻值是以某種精確定義的方式隨溫度變化的函數(shù)。最廣泛使用的RTD是鉑Pt100和Pt1000,其提供2線、3線和4線配置。其他RTD類型由鎳和銅制成。
表1.常見RTD類型
最常見的Pt100 RTD有兩種形狀:線繞和薄膜。每種類型都按照若干標(biāo)準(zhǔn)化曲線和容差構(gòu)建。最常見的標(biāo)準(zhǔn)化曲線是DIN曲線。DIN代表“Deutsches InsTItut für Normung”,意思是“德國標(biāo)準(zhǔn)化研究所”。曲線定義了鉑100Ω傳感器的阻值與溫度的關(guān)系、標(biāo)準(zhǔn)化容差和工作溫度范圍。其定義的RTD精度從0°C時(shí)100Ω的基本電阻開始。DIN RTD有不同的標(biāo)準(zhǔn)容差分類。這些容差顯示在表2中,它們也適用于低功耗應(yīng)用中使用的Pt1000 RTD。
表2.RTD精度—A類、B類、1/3 DIN
選擇RTD傳感器時(shí),RTD本身及其精度都要考慮。溫度范圍隨元件類型而變化,以校準(zhǔn)溫度(通常在0°C)顯示的精度隨溫度而變化。因此,必須定義所測(cè)量的溫度范圍,并要考慮到任何低于或高于校準(zhǔn)溫度的溫度都會(huì)有更寬的容差和更低的精度。
RTD按照0°C時(shí)的標(biāo)稱電阻來分類。Pt100傳感器的溫度系數(shù)約為0.385Ω/℃,Pt1000的溫度系數(shù)比Pt100大10倍。許多系統(tǒng)設(shè)計(jì)人員使用這些系數(shù)來獲得近似的電阻到溫度轉(zhuǎn)換,但Callendar-Van Dusen方程提供了更準(zhǔn)確的轉(zhuǎn)換。
溫度t ≤ 0°C時(shí),公式為:
溫度t ≥ 0°C時(shí),公式為:
其中:
t為RTD溫度(°C)
RRTD(t)為RTD在溫度(t)時(shí)的電阻
R0為RTD在0°C時(shí)的電阻(本例中R0 = 100 Ω)
A = 3.9083 × 10−3
B = −5.775 × 10−7
C = −4.183 × 10−12
RTD接線配置
選擇RTD時(shí)需要考慮的另一個(gè)傳感器參數(shù)是其接線配置,這會(huì)影響系統(tǒng)精度。市場(chǎng)上有三種不同的RTD接線配置,每種配置都有自己的優(yōu)點(diǎn)和缺點(diǎn),可能需要采用不同技術(shù)來減小測(cè)量誤差。
2線配置是最簡(jiǎn)單但精度最低的配置,原因是引線電阻的誤差及其隨溫度的變化導(dǎo)致了顯著的測(cè)量誤差。因此,這種配置僅用于引線很短的應(yīng)用或使用高電阻傳感器(例如Pt1000)的應(yīng)用,這樣可以最大程度地減小引線電阻對(duì)精度的影響。
3線配置使用三個(gè)引腳,優(yōu)勢(shì)突出,因而是使用最多的配置,在連接器尺寸最小化的設(shè)計(jì)中很有用(僅需要3個(gè)連接端子,而4線RTD需要4線端子)。相對(duì)于2線配置,3線配置在精度上也有顯著改善。3線配置中的引線電阻誤差可以通過不同的校準(zhǔn)技術(shù)來補(bǔ)償,本文稍后會(huì)介紹這些技術(shù)。
4線是最昂貴但最準(zhǔn)確的配置。這種配置消除了引線電阻及溫度變化效應(yīng)引起的誤差。因此,4線配置可實(shí)現(xiàn)最佳性能。
RTD配置電路
高精度RTD傳感器測(cè)量需要精密信號(hào)調(diào)理、模數(shù)轉(zhuǎn)換、線性化和校準(zhǔn)。RTD測(cè)量系統(tǒng)的典型設(shè)計(jì)由不同電路級(jí)組成,如圖2所示。雖然信號(hào)鏈看起來很簡(jiǎn)單,但其中涉及到幾個(gè)復(fù)雜因素,設(shè)計(jì)人員必須考慮復(fù)雜的元件選擇、連接圖、誤差分析和模擬信號(hào)調(diào)理挑戰(zhàn)。由于相關(guān)模塊數(shù)量較多,上述因素會(huì)影響整體系統(tǒng)電路板尺寸和物料清單(BOM)成本。但好消息是,ADI公司提供了大量集成式解決方案。該完整的系統(tǒng)解決方案可幫助設(shè)計(jì)人員簡(jiǎn)化設(shè)計(jì),減小電路板尺寸,縮短產(chǎn)品上市時(shí)間,并降低整個(gè)RTD測(cè)量系統(tǒng)的成本。
圖1.RTD接線配置
圖2.典型RTD測(cè)量信號(hào)鏈模塊
三種RTD接線配置需要不同的接線技術(shù)來將RTD連接到ADC,另外還要考慮其他外部元件以及ADC的要求,例如激勵(lì)電流和靈活的多路復(fù)用器。本節(jié)將更深入地討論每種RTD配置電路設(shè)計(jì)及注意事項(xiàng)。
Σ-Δ型ADC
當(dāng)設(shè)計(jì)RTD系統(tǒng)時(shí),Sigma-Delta(Σ-Δ)型ADC能提供多方面優(yōu)勢(shì)。首先,Σ-Δ型ADC能夠?qū)δM輸入過采樣,從而最大程度地減少外部濾波,只需要一個(gè)簡(jiǎn)單的RC濾波器。另外,它們支持靈活地選擇濾波器類型和輸出數(shù)據(jù)速率。在采用市電供電的設(shè)計(jì)中,內(nèi)置數(shù)字濾波可用來抑制交流電源的干擾。24位高分辨率ADC(如AD7124-4/AD7124-8)具有21.7位(最大值)的峰值分辨率。其他優(yōu)點(diǎn)包括:
有些Σ-Δ型ADC集成了很多功能,包括:
此類ADC顯著簡(jiǎn)化了RTD設(shè)計(jì),并且減少了BOM,降低了系統(tǒng)成本,縮小了電路板空間,縮短了產(chǎn)品上市時(shí)間。
對(duì)于本文,AD7124-4/AD7124-8用作ADC。這兩款器件是低噪聲、低電流精密ADC,集成了PGA、激勵(lì)電流、模擬輸入和基準(zhǔn)電壓緩沖器。
比率測(cè)量
比率式配置是使用RTD或熱敏電阻等電阻傳感器的系統(tǒng)的合適且高性價(jià)比的解決方案。采用比率式方法,基準(zhǔn)電壓和傳感器電壓從同一激勵(lì)源獲得。因此,激勵(lì)源不需要很精確。圖3顯示了4線RTD應(yīng)用中的比率式配置示例。恒定的激勵(lì)電流為RTD和精密電阻RREF供電,RREF上產(chǎn)生的電壓就是RTD測(cè)量的基準(zhǔn)電壓。激勵(lì)電流的任何變化都不會(huì)影響測(cè)量的精度。因此,采用比率式方法時(shí),允許使用噪聲較大且不那么穩(wěn)定的激勵(lì)電流。激勵(lì)電流具有更好的抗擾度,優(yōu)于電壓激勵(lì)。本文稍后會(huì)討論選擇激勵(lì)源值時(shí)需要考慮的主要因素。
圖3.4線RTD比率測(cè)量
IOUT/AIN共用引腳
許多RTD系統(tǒng)設(shè)計(jì)人員使用集成多路復(fù)用器和激勵(lì)電流的Σ-Δ型ADC,以支持多通道測(cè)量和靈活地將激勵(lì)電流連接到各傳感器。AD7124等ADC允許單個(gè)引腳同時(shí)用作激勵(lì)電流和模擬輸入引腳(參見圖4)。由于IOUT和AIN共用引腳,因此每個(gè)3線RTD傳感器只需要兩個(gè)引腳,這有利于增加通道數(shù)。但在這種配置中,抗混疊或電磁干擾(EMI)濾波中的大值電阻R與RTD串聯(lián),會(huì)給RTD電阻值帶來誤差,因此R值受到限制。正因如此,通常建議為每個(gè)激勵(lì)電流源提供專用引腳,以避免給RTD測(cè)量帶來誤差。
圖4.3線RTD,IOUT/AIN引腳共用
4線RTD連接圖
4線RTD配置性能最佳。相比于其他兩種配置,系統(tǒng)設(shè)計(jì)人員面臨的唯一問題是傳感器本身的成本和4引腳連接器的尺寸。在這種配置中,引線引起的誤差通過返回線路消除。4線配置使用開爾文檢測(cè),兩條線承載往返RTD的激勵(lì)電流,其余兩條線檢測(cè)RTD元件本身的電流。引腳電阻引起的誤差會(huì)被系統(tǒng)本身消除。4線配置只需要一個(gè)激勵(lì)電流IOUT,如圖5所示。來自ADC的三個(gè)模擬引腳用于實(shí)現(xiàn)單個(gè)4線RTD配置:一個(gè)引腳用于激勵(lì)電流IOUT,兩個(gè)引腳作為全差分輸入通道(AINP和AINM)用于檢測(cè)RTD上的電壓。
當(dāng)設(shè)計(jì)使用多個(gè)4線RTD時(shí),可以使用單個(gè)激勵(lì)電流源,并將激勵(lì)電流導(dǎo)向系統(tǒng)中的不同RTD。將基準(zhǔn)電阻放在RTD的低端,單個(gè)基準(zhǔn)電阻便可支持所有RTD測(cè)量。也就是說,該基準(zhǔn)電阻由所有RTD共享。請(qǐng)注意,如果ADC的基準(zhǔn)輸入具有寬共模范圍,則基準(zhǔn)電阻可以放在高端或低端。因此,對(duì)于單個(gè)4線RTD,可以使用高端或低端上的基準(zhǔn)電阻。但是,當(dāng)系統(tǒng)中使用多個(gè)4線RTD時(shí),將基準(zhǔn)電阻放在低端是有利的,因?yàn)橐粋€(gè)基準(zhǔn)電阻可以由所有RTD共享。請(qǐng)注意,某些ADC內(nèi)置基準(zhǔn)電壓緩沖器。這些緩沖器可能需要一定的裕量,因此如果使能緩沖器,則需要裕量電阻。使能緩沖器意味著可以將更強(qiáng)大的濾波連接到基準(zhǔn)引腳而不會(huì)引起誤差,例如ADC內(nèi)的增益錯(cuò)誤。