一、基本知識及現(xiàn)狀
從廣義上講只要能夠運行人工智能算法的芯片都叫作 AI 芯片。但是通常意義上的 AI 芯片指的是針對人工智能算法做了特殊加速設(shè)計的芯片, 現(xiàn)階段, 這些人工智能算法一般以深度學(xué)習(xí)算法為主,也可以包括其它機器學(xué)習(xí)算法。
深度學(xué)習(xí)算法,通常是基于接收到的連續(xù)數(shù)值, 通過學(xué)習(xí)處理, 并輸出連續(xù)數(shù)值的過程,實質(zhì)上并不能完全模仿生物大腦的運作機制。 基于這一現(xiàn)實, 研究界還提出了 SNN(Spiking Neural Network,脈沖神經(jīng)網(wǎng)絡(luò)) 模型。 作為第三代神經(jīng)網(wǎng)絡(luò)模型, SNN 更貼近生物神經(jīng)網(wǎng)絡(luò)——除了神經(jīng)元和突觸模型更貼近生物神經(jīng)元與突觸之外, SNN 還將時域信息引入了計算模型。目前基于 SNN 的 AI 芯片主要以 IBM 的 TrueNorth、 Intel 的 Loihi 以及國內(nèi)的清華大學(xué)天機芯為代表。
1、AI 芯片發(fā)展歷程
從圖靈的論文《計算機器與智能》 和圖靈測試, 到最初級的神經(jīng)元模擬單元——感知機, 再到現(xiàn)在多達(dá)上百層的深度神經(jīng)網(wǎng)絡(luò),人類對人工智能的探索從來就沒有停止過。 上世紀(jì)八十年代,多層神經(jīng)網(wǎng)絡(luò)和反向傳播算法的出現(xiàn)給人工智能行業(yè)點燃了新的火花。反向傳播的主要創(chuàng)新在于能將信息輸出和目標(biāo)輸出之間的誤差通過多層網(wǎng)絡(luò)往前一級迭代反饋,將最終的輸出收斂到某一個目標(biāo)范圍之內(nèi)。 1989 年貝爾實驗室成功利用反向傳播算法,在多層神經(jīng)網(wǎng)絡(luò)開發(fā)了一個手寫郵編識別器。 1998 年 Yann LeCun 和 Yoshua Bengio 發(fā)表了手寫識別神經(jīng)網(wǎng)絡(luò)和反向傳播優(yōu)化相關(guān)的論文《Gradient-based learning applied to documentrecognition》,開創(chuàng)了卷積神經(jīng)網(wǎng)絡(luò)的時代。
此后,人工智能陷入了長時間的發(fā)展沉寂階段,直到 1997年 IBM的深藍(lán)戰(zhàn)勝國際象棋大師和 2011年 IBM的沃森智能系統(tǒng)在 Jeopardy節(jié)目中勝出,人工智能才又一次為人們所關(guān)注。 2016 年 Alpha Go 擊敗韓國圍棋九段職業(yè)選手,則標(biāo)志著人工智能的又一波高潮。從基礎(chǔ)算法、 底層硬件、 工具框架到實際應(yīng)用場景, 現(xiàn)階段的人工智能領(lǐng)域已經(jīng)全面開花。
作為人工智能核心的底層硬件 AI 芯片,也同樣經(jīng)歷了多次的起伏和波折,總體看來,AI 芯片的發(fā)展前后經(jīng)歷了四次大的變化,其發(fā)展歷程如圖所示。
(1) 2007 年以前, AI 芯片產(chǎn)業(yè)一直沒有發(fā)展成為成熟的產(chǎn)業(yè); 同時由于當(dāng)時算法、數(shù)據(jù)量等因素, 這個階段 AI 芯片并沒有特別強烈的市場需求,通用的 CPU 芯片即可滿足應(yīng)用需要。
(2) 隨著高清視頻、 VR、 AR游戲等行業(yè)的發(fā)展, GPU產(chǎn)品取得快速的突破; 同時人們發(fā)現(xiàn) GPU 的并行計算特性恰好適應(yīng)人工智能算法及大數(shù)據(jù)并行計算的需求,如 GPU 比之前傳統(tǒng)的 CPU在深度學(xué)習(xí)算法的運算上可以提高幾十倍的效率,因此開始嘗試使用 GPU進行人工智能計算。
(3) 進入 2010 年后,云計算廣泛推廣,人工智能的研究人員可以通過云計算借助大量 CPU 和 GPU 進行混合運算,進一步推進了 AI 芯片的深入應(yīng)用,從而催生了各類 AI 芯片的研發(fā)與應(yīng)用。
(4)人工智能對于計算能力的要求不斷快速地提升,進入 2015 年后, GPU 性能功耗比不高的特點使其在工作適用場合受到多種限制, 業(yè)界開始研發(fā)針對人工智能的專用芯片,以期通過更好的硬件和芯片架構(gòu),在計算效率、能耗比等性能上得到進一步提升。
2、我國 AI 芯片發(fā)展情況
目前,我國的人工智能芯片行業(yè)發(fā)展尚處于起步階段。 長期以來,中國在 CPU、 GPU、DSP 處理器設(shè)計上一直處于追趕地位,絕大部分芯片設(shè)計企業(yè)依靠國外的 IP 核設(shè)計芯片,在自主創(chuàng)新上受到了極大的限制。 然而,人工智能的興起,無疑為中國在處理器領(lǐng)域?qū)崿F(xiàn)彎道超車提供了絕佳的機遇。
人工智能領(lǐng)域的應(yīng)用目前還處于面向行業(yè)應(yīng)用階段,生態(tài)上尚未形成壟斷,國產(chǎn)處理器廠商與國外競爭對手在人工智能這一全新賽場上處在同一起跑線上,因此, 基于新興技術(shù)和應(yīng)用市場,中國在建立人工智能生態(tài)圈方面將大有可為。
由于我國特殊的環(huán)境和市場,國內(nèi) AI 芯片的發(fā)展目前呈現(xiàn)出百花齊放、百家爭鳴的態(tài)勢, AI 芯片的應(yīng)用領(lǐng)域也遍布股票交易、金融、商品推薦、安防、早教機器人以及無人駕駛等眾多領(lǐng)域,催生了大量的人工智能芯片創(chuàng)業(yè)公司,如地平線、深鑒科技、中科寒武紀(jì)等。
盡管如此, 國內(nèi)公司卻并未如國外大公司一樣形成市場規(guī)模, 反而出現(xiàn)各自為政的散裂發(fā)展現(xiàn)狀。除了新興創(chuàng)業(yè)公司,國內(nèi)研究機構(gòu)如北京大學(xué)、清華大學(xué)、中國科學(xué)院等在AI 芯片領(lǐng)域都有深入研究;而其他公司如百度和比特大陸等, 2017 年也有一些成果發(fā)布??梢灶A(yù)見,未來誰先在人工智能領(lǐng)域掌握了生態(tài)系統(tǒng),誰就掌握住了這個產(chǎn)業(yè)的主動權(quán)。
3、AI學(xué)者概況
基于來自清華大學(xué)AMiner 人才庫數(shù)據(jù),全球人工智能芯片領(lǐng)域?qū)W者分布如圖所示, 從圖中可以看到, 人工智能芯片領(lǐng)域的學(xué)者主要分布在北美洲,其次是歐洲。 中國對人工智能芯片的研究緊跟其后,南美洲、非洲和大洋洲人才相對比較匱乏。
按國家進行統(tǒng)計來看美國是人工智能芯片領(lǐng)域科技發(fā)展的核心。 英國的人數(shù)緊排在美國之后。其他的專家主要分布在中國、 德國、 加拿大、意大利和日本 。
對全球人工智能芯片領(lǐng)域最具影響力的 1000 人的遷徙路徑進行了統(tǒng)計分析,得出下圖所示的各國人才逆順差對比。
可以看出,各國人才的流失和引進是相對比較均衡的,其中美國為人才流動大國,人才輸入和輸出幅度都大幅度領(lǐng)先。英國、 中國、 德國和瑞士等國次于美國,但各國之間人才流動相差并不明顯。
二、AI 芯片的分類及技術(shù)
人工智能芯片目前有兩種發(fā)展路徑:一種是延續(xù)傳統(tǒng)計算架構(gòu),加速硬件計算能力,主要以 3 種類型的芯片為代表,即 GPU、 FPGA、 ASIC,但 CPU依舊發(fā)揮著不可替代的作用;另一種是顛覆經(jīng)典的馮·諾依曼計算架構(gòu),采用類腦神經(jīng)結(jié)構(gòu)來提升計算能力, 以 IBM TrueNorth 芯片為代表。
1、傳統(tǒng)的 CPU
計算機工業(yè)從 1960 年代早期開始使用 CPU 這個術(shù)語。迄今為止, CPU 從形態(tài)、設(shè)計到實現(xiàn)都已發(fā)生了巨大的變化,但是其基本工作原理卻一直沒有大的改變。 通常 CPU 由控制器和運算器這兩個主要部件組成。 傳統(tǒng)的 CPU 內(nèi)部結(jié)構(gòu)圖如圖 3 所示, 從圖中我們可以看到:實質(zhì)上僅單獨的 ALU 模塊(邏輯運算單元)是用來完成數(shù)據(jù)計算的,其他各個模塊的存在都是為了保證指令能夠一條接一條的有序執(zhí)行。這種通用性結(jié)構(gòu)對于傳統(tǒng)的編程計算模式非常適合,同時可以通過提升 CPU 主頻(提升單位時間內(nèi)執(zhí)行指令的條數(shù))來提升計算速度。
但對于深度學(xué)習(xí)中的并不需要太多的程序指令、 卻需要海量數(shù)據(jù)運算的計算需求, 這種結(jié)構(gòu)就顯得有些力不從心。尤其是在功耗限制下, 無法通過無限制的提升 CPU 和內(nèi)存的工作頻率來加快指令執(zhí)行速度, 這種情況導(dǎo)致 CPU 系統(tǒng)的發(fā)展遇到不可逾越的瓶頸。
2、并行加速計算的 GPU
GPU 作為最早從事并行加速計算的處理器,相比 CPU 速度快, 同時比其他加速器芯片編程靈活簡單。
傳統(tǒng)的 CPU 之所以不適合人工智能算法的執(zhí)行,主要原因在于其計算指令遵循串行執(zhí)行的方式,沒能發(fā)揮出芯片的全部潛力。與之不同的是, GPU 具有高并行結(jié)構(gòu),在處理圖形數(shù)據(jù)和復(fù)雜算法方面擁有比 CPU 更高的效率。對比 GPU 和 CPU 在結(jié)構(gòu)上的差異, CPU大部分面積為控制器和寄存器,而 GPU 擁有更ALU(ARITHMETIC LOGIC UNIT,邏輯運算單元)用于數(shù)據(jù)處理,這樣的結(jié)構(gòu)適合對密集型數(shù)據(jù)進行并行處理, CPU 與 GPU 的結(jié)構(gòu)對比如圖 所示。程序在 GPU系統(tǒng)上的運行速度相較于單核 CPU往往提升幾十倍乃至上千倍。隨著英偉達(dá)、 AMD 等公司不斷推進其對 GPU 大規(guī)模并行架構(gòu)的支持,面向通用計算的 GPU(即GPGPU, GENERAL PURPOSE GPU,通用計算圖形處理器)已成為加速可并行應(yīng)用程序的重要手段。
GPU 的發(fā)展歷程可分為 3 個階段, 發(fā)展歷程如圖所示:
第 一 代 GPU(1999 年 以 前 ) , 部 分 功 能 從 CPU 分 離 , 實 現(xiàn) 硬 件 加 速 , 以GE(GEOMETRY ENGINE)為代表,只能起到 3D 圖像處理的加速作用,不具有軟件編程特性。
第二代 GPU(1999-2005 年), 實現(xiàn)進一步的硬件加速和有限的編程性。 1999 年,英偉達(dá)發(fā)布了“專為執(zhí)行復(fù)雜的數(shù)學(xué)和幾何計算的” GeForce256 圖像處理芯片,將更多的晶體管用作執(zhí)行單元, 而不是像 CPU 那樣用作復(fù)雜的控制單元和緩存,將 T&L(TRANSFORM AND LIGHTING)等功能從 CPU 分離出來,實現(xiàn)了快速變換,這成為 GPU 真正出現(xiàn)的標(biāo)志。之后幾年, GPU 技術(shù)快速發(fā)展,運算速度迅速超過 CPU。 2001 年英偉達(dá)和 ATI 分別推出的GEFORCE3 和 RADEON 8500,圖形硬件的流水線被定義為流處理器,出現(xiàn)了頂點級可編程性,同時像素級也具有有限的編程性,但 GPU 的整體編程性仍然比較有限。
第三代 GPU(2006年以后), GPU實現(xiàn)方便的編程環(huán)境創(chuàng)建, 可以直接編寫程序。 2006年英偉達(dá)與 ATI分別推出了 CUDA(Compute United Device Architecture,計算統(tǒng)一設(shè)備架構(gòu))編程環(huán)境和 CTM(CLOSE TO THE METAL)編程環(huán)境, 使得 GPU 打破圖形語言的局限成為真正的并行數(shù)據(jù)處理超級加速器。
2008 年,蘋果公司提出一個通用的并行計算編程平臺 OPENCL(OPEN COMPUTING LANGUAGE,開放運算語言),與 CUDA 綁定在英偉達(dá)的顯卡上不同,OPENCL 和具體的計算設(shè)備無關(guān)。
目前, GPU 已經(jīng)發(fā)展到較為成熟的階段。谷歌、 FACEBOOK、微軟、 TWITTER 和百度等公司都在使用 GPU 分析圖片、視頻和音頻文件,以改進搜索和圖像標(biāo)簽等應(yīng)用功能。此外,很多汽車生產(chǎn)商也在使用 GPU 芯片發(fā)展無人駕駛。 不僅如此, GPU 也被應(yīng)用于VR/AR 相關(guān)的產(chǎn)業(yè)。
但是 GPU也有一定的局限性。 深度學(xué)習(xí)算法分為訓(xùn)練和推斷兩部分, GPU 平臺在算法訓(xùn)練上非常高效。但在推斷中對于單項輸入進行處理的時候,并行計算的優(yōu)勢不能完全發(fā)揮出來。
3、半定制化的 FPGA
FPGA 是在 PAL、 GAL、 CPLD 等可編程器件基礎(chǔ)上進一步發(fā)展的產(chǎn)物。用戶可以通過燒入 FPGA 配置文件來定義這些門電路以及存儲器之間的連線。這種燒入不是一次性的,比如用戶可以把 FPGA 配置成一個微控制器 MCU,使用完畢后可以編輯配置文件把同一個FPGA 配置成一個音頻編解碼器。因此, 它既解決了定制電路靈活性的不足,又克服了原有可編程器件門電路數(shù)有限的缺點。
FPGA 可同時進行數(shù)據(jù)并行和任務(wù)并行計算,在處理特定應(yīng)用時有更加明顯的效率提升。對于某個特定運算,通用 CPU 可能需要多個時鐘周期; 而 FPGA 可以通過編程重組電路,直接生成專用電路,僅消耗少量甚至一次時鐘周期就可完成運算。
此外,由于 FPGA的靈活性,很多使用通用處理器或 ASIC難以實現(xiàn)的底層硬件控制操作技術(shù), 利用 FPGA 可以很方便的實現(xiàn)。這個特性為算法的功能實現(xiàn)和優(yōu)化留出了更大空間。同時 FPGA 一次性成本(光刻掩模制作成本)遠(yuǎn)低于 ASIC,在芯片需求還未成規(guī)模、深度學(xué)習(xí)算法暫未穩(wěn)定, 需要不斷迭代改進的情況下,利用 FPGA 芯片具備可重構(gòu)的特性來實現(xiàn)半定制的人工智能芯片是最佳選擇之一。
功耗方面,從體系結(jié)構(gòu)而言, FPGA 也具有天生的優(yōu)勢。傳統(tǒng)的馮氏結(jié)構(gòu)中,執(zhí)行單元(如 CPU 核)執(zhí)行任意指令,都需要有指令存儲器、譯碼器、各種指令的運算器及分支跳轉(zhuǎn)處理邏輯參與運行, 而 FPGA 每個邏輯單元的功能在重編程(即燒入)時就已經(jīng)確定,不需要指令,無需共享內(nèi)存,從而可以極大的降低單位執(zhí)行的功耗,提高整體的能耗比。
由于 FPGA 具備靈活快速的特點, 因此在眾多領(lǐng)域都有替代 ASIC 的趨勢。 FPGA 在人工智能領(lǐng)域的應(yīng)用如圖所示。
4、全定制化的 ASIC
目前以深度學(xué)習(xí)為代表的人工智能計算需求,主要采用 GPU、 FPGA 等已有的適合并行計算的通用芯片來實現(xiàn)加速。在產(chǎn)業(yè)應(yīng)用沒有大規(guī)模興起之時,使用這類已有的通用芯片可以避免專門研發(fā)定制芯片(ASIC) 的高投入和高風(fēng)險。但是,由于這類通用芯片設(shè)計初衷并非專門針對深度學(xué)習(xí),因而天然存在性能、 功耗等方面的局限性。隨著人工智能應(yīng)用規(guī)模的擴大,這類問題日益突顯。
GPU 作為圖像處理器, 設(shè)計初衷是為了應(yīng)對圖像處理中的大規(guī)模并行計算。因此,在應(yīng)用于深度學(xué)習(xí)算法時,有三個方面的局限性:
第一,應(yīng)用過程中無法充分發(fā)揮并行計算優(yōu)勢。 深度學(xué)習(xí)包含訓(xùn)練和推斷兩個計算環(huán)節(jié), GPU 在深度學(xué)習(xí)算法訓(xùn)練上非常高效, 但對于單一輸入進行推斷的場合, 并行度的優(yōu)勢不能完全發(fā)揮。
第二, 無法靈活配置硬件結(jié)構(gòu)。 GPU 采用 SIMT 計算模式, 硬件結(jié)構(gòu)相對固定。
目前深度學(xué)習(xí)算法還未完全穩(wěn)定,若深度學(xué)習(xí)算法發(fā)生大的變化, GPU 無法像 FPGA 一樣可以靈活的配制硬件結(jié)構(gòu)。 第三,運行深度學(xué)習(xí)算法能效低于 FPGA。
盡管 FPGA 倍受看好,甚至新一代百度大腦也是基于 FPGA 平臺研發(fā),但其畢竟不是專門為了適用深度學(xué)習(xí)算法而研發(fā),實際應(yīng)用中也存在諸多局限:
第一,基本單元的計算能力有限。為了實現(xiàn)可重構(gòu)特性, FPGA 內(nèi)部有大量極細(xì)粒度的基本單元,但是每個單元的計算能力(主要依靠 LUT 查找表)都遠(yuǎn)遠(yuǎn)低于 CPU 和 GPU 中的 ALU 模塊;
第二、 計算資源占比相對較低。 為實現(xiàn)可重構(gòu)特性, FPGA 內(nèi)部大量資源被用于可配置的片上路由與連線;
第三,速度和功耗相對專用定制芯片(ASIC)仍然存在不小差距;
第四, FPGA 價格較為昂貴,在規(guī)模放量的情況下單塊 FPGA 的成本要遠(yuǎn)高于專用定制芯片。
因此,隨著人工智能算法和應(yīng)用技術(shù)的日益發(fā)展,以及人工智能專用芯片 ASIC產(chǎn)業(yè)環(huán)境的逐漸成熟, 全定制化人工智能 ASIC也逐步體現(xiàn)出自身的優(yōu)勢,從事此類芯片研發(fā)與應(yīng)用的國內(nèi)外比較有代表性的公司如圖所示。
深度學(xué)習(xí)算法穩(wěn)定后, AI 芯片可采用 ASIC 設(shè)計方法進行全定制, 使性能、功耗和面積等指標(biāo)面向深度學(xué)習(xí)算法做到最優(yōu)。
5、類腦芯片
類腦芯片不采用經(jīng)典的馮·諾依曼架構(gòu), 而是基于神經(jīng)形態(tài)架構(gòu)設(shè)計,以 IBM Truenorth為代表。 IBM 研究人員將存儲單元作為突觸、計算單元作為神經(jīng)元、傳輸單元作為軸突搭建了神經(jīng)芯片的原型。
目前, Truenorth 用三星 28nm 功耗工藝技術(shù),由 54 億個晶體管組成的芯片構(gòu)成的片上網(wǎng)絡(luò)有 4096 個神經(jīng)突觸核心,實時作業(yè)功耗僅為 70mW。由于神經(jīng)突觸要求權(quán)重可變且要有記憶功能, IBM 采用與 CMOS 工藝兼容的相變非揮發(fā)存儲器(PCM)的技術(shù)實驗性的實現(xiàn)了新型突觸,加快了商業(yè)化進程。
三、AI芯片產(chǎn)業(yè)及趨勢
1、AI芯片應(yīng)用領(lǐng)域
隨著人工智能芯片的持續(xù)發(fā)展,應(yīng)用領(lǐng)域會隨時間推移而不斷向多維方向發(fā)展,這里我們選擇目前發(fā)展比較集中的幾個行業(yè)做相關(guān)的介紹。
AI芯片目前比較集中的應(yīng)用領(lǐng)域
(1)智能手機
2017 年 9 月,華為在德國柏林消費電子展發(fā)布了麒麟 970 芯片,該芯片搭載了寒武紀(jì)的 NPU,成為“全球首款智能手機移動端 AI 芯片” ; 2017 年 10 月中旬 Mate10 系列新品(該系列手機的處理器為麒麟 970)上市。搭載了 NPU 的華為 Mate10 系列智能手機具備了較強的深度學(xué)習(xí)、本地端推斷能力,讓各類基于深度神經(jīng)網(wǎng)絡(luò)的攝影、圖像處理應(yīng)用能夠為用戶提供更加完美的體驗。
而蘋果發(fā)布以 iPhone X 為代表的手機及它們內(nèi)置的 A11 Bionic 芯片。A11 Bionic 中自主研發(fā)的雙核架構(gòu) Neural Engine(神經(jīng)網(wǎng)絡(luò)處理引擎),它每秒處理相應(yīng)神經(jīng)網(wǎng)絡(luò)計算需求的次數(shù)可達(dá) 6000 億次。這個 Neural Engine 的出現(xiàn),讓 A11 Bionic 成為一塊真正的 AI 芯片。 A11 Bionic 大大提升了 iPhone X 在拍照方面的使用體驗,并提供了一些富有創(chuàng)意的新用法。
(2)ADAS(高級輔助駕駛系統(tǒng))
ADAS 是最吸引大眾眼球的人工智能應(yīng)用之一, 它需要處理海量的由激光雷達(dá)、毫米波雷達(dá)、攝像頭等傳感器采集的實時數(shù)據(jù)。相對于傳統(tǒng)的車輛控制方法,智能控制方法主要體現(xiàn)在對控制對象模型的運用和綜合信息學(xué)習(xí)運用上,包括神經(jīng)網(wǎng)絡(luò)控制和深度學(xué)習(xí)方法等,得益于 AI 芯片的飛速發(fā)展, 這些算法已逐步在車輛控制中得到應(yīng)用。
(3)CV(計算機視覺(Computer Vision) 設(shè)備
需要使用計算機視覺技術(shù)的設(shè)備,如智能攝像頭、無人機、 行車記錄儀、人臉識別迎賓機器人以及智能手寫板等設(shè)備, 往往都具有本地端推斷的需要,如果僅能在聯(lián)網(wǎng)下工作,無疑將帶來糟糕的體驗。而計算機視覺技術(shù)目前看來將會成為人工智能應(yīng)用的沃土之一,計算機視覺芯片將擁有廣闊的市場前景。
(4) VR 設(shè)備
VR 設(shè)備芯片的代表為 HPU 芯片, 是微軟為自身 VR 設(shè)備 Hololens 研發(fā)定制的。 這顆由臺積電代工的芯片能同時處理來自 5個攝像頭、 1個深度傳感器以及運動傳感器的數(shù)據(jù),并具備計算機視覺的矩陣運算和 CNN 運算的加速功能。這使得 VR 設(shè)備可重建高質(zhì)量的人像 3D 影像,并實時傳送到任何地方。
(5)語音交互設(shè)備
語音交互設(shè)備芯片方面,國內(nèi)有啟英泰倫以及云知聲兩家公司,其提供的芯片方案均內(nèi)置了為語音識別而優(yōu)化的深度神經(jīng)網(wǎng)絡(luò)加速方案,實現(xiàn)設(shè)備的語音離線識別。穩(wěn)定的識別能力為語音技術(shù)的落地提供了可能; 與此同時,語音交互的核心環(huán)節(jié)也取得重大突破。語音識別環(huán)節(jié)突破了單點能力,從遠(yuǎn)場識別,到語音分析和語義理解有了重大突破,呈現(xiàn)出一種整體的交互方案。
(6)機器人
無論是家居機器人還是商用服務(wù)機器人均需要專用軟件+芯片的人工智能解決方案,這方面典型公司有由前百度深度學(xué)習(xí)實驗室負(fù)責(zé)人余凱創(chuàng)辦的地平線機器人,當(dāng)然地平線機器人除此之外,還提供 ADAS、智能家居等其他嵌入式人工智能解決方案。
2、AI芯片國內(nèi)外代表性企業(yè)
本篇將介紹目前人工智能芯片技術(shù)領(lǐng)域的國內(nèi)外代表性企業(yè)。文中排名不分先后。人工智能芯片技術(shù)領(lǐng)域的國內(nèi)代表性企業(yè)包括中科寒武紀(jì)、中星微、地平線機器人、深鑒科技、 靈汐科技、 啟英泰倫、百度、華為等,國外包括英偉達(dá)、 AMD、 Google、高通、Nervana Systems、 Movidius、 IBM、 ARM、 CEVA、 MIT/Eyeriss、蘋果、三星等。
中科寒武紀(jì)
寒武紀(jì)科技成立于 2016 年,總部在北京,創(chuàng)始人是中科院計算所的陳天石、陳云霽兄弟,公司致力于打造各類智能云服務(wù)器、智能終端以及智能機器人的核心處理器芯片。阿里巴巴創(chuàng)投、聯(lián)想創(chuàng)投、國科投資、中科圖靈、元禾原點、涌鏵投資聯(lián)合投資,為全球 AI芯片領(lǐng)域第一個獨角獸初創(chuàng)公司。
寒武紀(jì)是全球第一個成功流片并擁有成熟產(chǎn)品的 AI 芯片公司,擁有終端 AI 處理器 IP和云端高性能 AI 芯片兩條產(chǎn)品線。 2016 年發(fā)布的寒武紀(jì) 1A 處理器(Cambricon-1A) 是世界首款商用深度學(xué)習(xí)專用處理器,面向智能手機、安防監(jiān)控、無人機、可穿戴設(shè)備以及智能駕駛等各類終端設(shè)備,在運行主流智能算法時性能功耗比全面超越傳統(tǒng)處理器。
中星微
1999 年, 由多位來自硅谷的博士企業(yè)家在北京中關(guān)村科技園區(qū)創(chuàng)建了中星微電子有限公司, 啟動并承擔(dān)了國家戰(zhàn)略項目——“星光中國芯工程”,致力于數(shù)字多媒體芯片的開發(fā)、設(shè)計和產(chǎn)業(yè)化。
2016 年初,中星微推出了全球首款集成了神經(jīng)網(wǎng)絡(luò)處理器(NPU)的 SVAC 視頻編解碼 SoC,使得智能分析結(jié)果可以與視頻數(shù)據(jù)同時編碼,形成結(jié)構(gòu)化的視頻碼流。該技術(shù)被廣泛應(yīng)用于視頻監(jiān)控攝像頭,開啟了安防監(jiān)控智能化的新時代。自主設(shè)計的嵌入式神經(jīng)網(wǎng)絡(luò)處理器(NPU)采用了“數(shù)據(jù)驅(qū)動并行計算” 架構(gòu),專門針對深度學(xué)習(xí)算法進行了優(yōu)化,具備高性能、低功耗、高集成度、小尺寸等特點,特別適合物聯(lián)網(wǎng)前端智能的需求。
地平線機器人(Horizon Robotics)
地平線機器人成立于 2015 年,總部在北京,創(chuàng)始人是前百度深度學(xué)習(xí)研究院負(fù)責(zé)人余凱。BPU(BrainProcessing Unit) 是地平線機器人自主設(shè)計研發(fā)的高效人工智能處理器架構(gòu)IP,支持 ARM/GPU/FPGA/ASIC 實現(xiàn),專注于自動駕駛、人臉圖像辨識等專用領(lǐng)域。
2017年,地平線發(fā)布基于高斯架構(gòu)的嵌入式人工智能解決方案,將在智能駕駛、智能生活、公共安防三個領(lǐng)域進行應(yīng)用,第一代 BPU芯片“盤古” 目前已進入流片階段,預(yù)計在 2018年下半年推出,能支持 1080P 的高清圖像輸入,每秒鐘處理 30 幀,檢測跟蹤數(shù)百個目標(biāo)。地平線的第一代 BPU 采用 TSMC 的 40nm工藝,相對于傳統(tǒng) CPU/GPU, 能效可以提升 2~3 個數(shù)量級(100~1,000 倍左右)。
深鑒科技
深鑒科技成立于 2016 年,總部在北京。由清華大學(xué)與斯坦福大學(xué)的世界頂尖深度學(xué)習(xí)硬件研究者創(chuàng)立。深鑒科技于 2018 年 7 月被賽靈思收購。深鑒科技將其開發(fā)的基于 FPGA 的神經(jīng)網(wǎng)絡(luò)處理器稱為 DPU。
到目前為止,深鑒公開發(fā)布了兩款 DPU:亞里士多德架構(gòu)和笛卡爾架構(gòu),其中,亞里士多德架構(gòu)是針對卷積神經(jīng)網(wǎng)絡(luò) CNN 而設(shè)計;笛卡爾架構(gòu)專為處理 DNN/RNN 網(wǎng)絡(luò)而設(shè)計,可對經(jīng)過結(jié)構(gòu)壓縮后的稀疏神經(jīng)網(wǎng)絡(luò)進行極致高效的硬件加速。相對于 Intel XeonCPU 與 Nvidia TitanX GPU,應(yīng)用笛卡爾架構(gòu)的處理器在計算速度上分別提高 189 倍與 13 倍,具有 24,000 倍與 3,000 倍的更高能效。
靈汐科技
靈汐科技于 2018 年 1 月在北京成立,聯(lián)合創(chuàng)始人包括清華大學(xué)的世界頂尖類腦計算研究者。
公司致力于新一代神經(jīng)網(wǎng)絡(luò)處理器(Tianjic) 開發(fā), 特點在于既能夠高效支撐現(xiàn)有流行的機器學(xué)習(xí)算法(包括 CNN, MLP, LSTM 等網(wǎng)絡(luò)架構(gòu)),也能夠支撐更仿腦的、更具成長潛力的脈沖神經(jīng)網(wǎng)絡(luò)算法; 使芯片具有高計算力、高多任務(wù)并行度和較低功耗等優(yōu)點。 軟件工具鏈方面支持由 Caffe、 TensorFlow 等算法平臺直接進行神經(jīng)網(wǎng)絡(luò)的映射編譯,開發(fā)友善的用戶交互界面。 Tianjic 可用于云端計算和終端應(yīng)用場景,助力人工智能的落地和推廣。
啟英泰倫
啟英泰倫于2015年 11月在成都成立,是一家語音識別芯片研發(fā)商。啟英泰倫的 CI1006是基于 ASIC 架構(gòu)的人工智能語音識別芯片,包含了腦神經(jīng)網(wǎng)絡(luò)處理硬件單元,能夠完美支持 DNN 運算架構(gòu),進行高性能的數(shù)據(jù)并行計算,可極大的提高人工智能深度學(xué)習(xí)語音技術(shù)對大量數(shù)據(jù)的處理效率。
百度
百度 2017 年 8 月 Hot Chips 大會上發(fā)布了 XPU,這是一款 256 核、基于 FPGA 的云計算加速芯片。合作伙伴是賽思靈(Xilinx)。 XPU 采用新一代 AI 處理架構(gòu),擁有 GPU 的通用性和 FPGA 的高效率和低能耗,對百度的深度學(xué)習(xí)平臺 PaddlePaddle 做了高度的優(yōu)化和加速。據(jù)介紹, XPU 關(guān)注計算密集型、基于規(guī)則的多樣化計算任務(wù),希望提高效率和性能,并帶來類似 CPU 的靈活性。
華為
麒麟 970 搭載的神經(jīng)網(wǎng)絡(luò)處理器 NPU 采用了寒武紀(jì) IP,如圖 12 所示。麒麟 970 采用了 TSMC 10nm 工藝制程,擁有 55 億個晶體管,功耗相比上一代芯片降低 20%。 CPU 架構(gòu)方面為 4 核 A73+4 核 A53 組成 8 核心,能耗同比上一代芯片得到 20%的提升; GPU 方面采用了 12 核 Mali G72 MP12GPU,在圖形處理以及能效兩項關(guān)鍵指標(biāo)方面分別提升 20%和50%; NPU 采用 HiAI移動計算架構(gòu),在 FP16 下提供的運算性能可以達(dá)到 1.92 TFLOPs,相比四個 Cortex-A73 核心,處理同樣的 AI 任務(wù),有大約具備 50 倍能效和 25 倍性能優(yōu)勢。
英偉達(dá)(Nvidia)
英偉達(dá)創(chuàng)立于 1993 年,總部位于美國加利福尼亞州圣克拉拉市。 早在 1999 年, 英偉達(dá)發(fā)明了 GPU,重新定義了現(xiàn)代計算機圖形技術(shù),徹底改變了并行計算。深度學(xué)習(xí)對計算速度有非常苛刻的要求, 而英偉達(dá)的 GPU 芯片可以讓大量處理器并行運算,速度比 CPU 快十倍甚至幾十倍,因而成為絕大部分人工智能研究者和開發(fā)者的首選。自從 Google Brain 采用 1.6 萬個 GPU 核訓(xùn)練 DNN 模型, 并在語音和圖像識別等領(lǐng)域獲得巨大成功以來, 英偉達(dá)已成為 AI 芯片市場中無可爭議的領(lǐng)導(dǎo)者。
AMD
美國 AMD 半導(dǎo)體公司專門為計算機、 通信和消費電子行業(yè)設(shè)計和制造各種創(chuàng)新的微處理器(CPU、 GPU、 APU、 主板芯片組、 電視卡芯片等),以及提供閃存和低功率處理器解決方案, 公司成立于 1969 年。 AMD 致力為技術(shù)用戶——從企業(yè)、 政府機構(gòu)到個人消費者——提供基于標(biāo)準(zhǔn)的、 以客戶為中心的解決方案。
2017 年 12 月 Intel 和 AMD 宣布將聯(lián)手推出一款結(jié)合英特爾處理器和 AMD 圖形單元的筆記本電腦芯片。 目前 AMD 擁有針對 AI 和機器學(xué)習(xí)的高性能 Radeon Instinc 加速卡,開放式軟件平臺 ROCm 等。
Google 在 2016 年宣布獨立開發(fā)一種名為 TPU 的全新的處理系統(tǒng)。 TPU 是專門為機器學(xué)習(xí)應(yīng)用而設(shè)計的專用芯片。通過降低芯片的計算精度,減少實現(xiàn)每個計算操作所需晶體管數(shù)量的方式,讓芯片的每秒運行的操作個數(shù)更高,這樣經(jīng)過精細(xì)調(diào)優(yōu)的機器學(xué)習(xí)模型就能在芯片上運行得更快,進而更快地讓用戶得到更智能的結(jié)果。
在 2016 年 3 月打敗了李世石和 2017 年 5 月打敗了柯杰的阿爾法狗,就是采用了谷歌的 TPU 系列芯片。
Google I/O-2018 開發(fā)者大會期間,正式發(fā)布了第三代人工智能學(xué)習(xí)專用處理器 TPU 3.0。TPU3.0 采用 8 位低精度計算以節(jié)省晶體管數(shù)量, 對精度影響很小但可以大幅節(jié)約功耗、加快速度,同時還有脈動陣列設(shè)計,優(yōu)化矩陣乘法與卷積運算, 并使用更大的片上內(nèi)存,減少對系統(tǒng)內(nèi)存的依賴。 速度能加快到最高 100PFlops(每秒 1000 萬億次浮點計算)。
高通
在智能手機芯片市場占據(jù)絕對優(yōu)勢的高通公司,也在人工智能芯片方面積極布局。據(jù)高通提供的資料顯示,其在人工智能方面已投資了 Clarifai 公司和中國“專注于物聯(lián)網(wǎng)人工智能服務(wù)” 的云知聲。而早在 2015 年 CES 上,高通就已推出了一款搭載驍龍 SoC 的飛行機器人——Snapdragon Cargo。
高通認(rèn)為在工業(yè)、農(nóng)業(yè)的監(jiān)測以及航拍對拍照、攝像以及視頻新需求上,公司恰好可以發(fā)揮其在計算機視覺領(lǐng)域的能力。此外,高通的驍龍 820 芯片也被應(yīng)用于 VR頭盔中。事實上,高通已經(jīng)在研發(fā)可以在本地完成深度學(xué)習(xí)的移動端設(shè)備芯片。
Nervana Systems
Nervana 創(chuàng)立于 2014 年, 公司推出的 The Nervana Engine 是一個為深度學(xué)習(xí)專門定制和優(yōu)化的 ASIC 芯片。這個方案的實現(xiàn)得益于一項叫做 High Bandwidth Memory 的新型內(nèi)存技術(shù), 這項技術(shù)同時擁有高容量和高速度,提供 32GB 的片上儲存和 8TB 每秒的內(nèi)存訪問速度。該公司目前提供一個人工智能服務(wù)“in the cloud” ,他們聲稱這是世界上最快的且目前已被金融服務(wù)機構(gòu)、醫(yī)療保健提供者和政府機構(gòu)所使用的服務(wù)。 他們的新型芯片將會保證 Nervana 云平臺在未來的幾年內(nèi)仍保持最快的速度。
Movidius(被 Intel 收購)
2016 年 9 月, Intel 發(fā)表聲明收購了 Movidius。 Movidius 專注于研發(fā)高性能視覺處理芯片。其最新一代的 Myriad2 視覺處理器主要由 SPARC 處理器作為主控制器,加上專門的DSP 處理器和硬件加速電路來處理專門的視覺和圖像信號。這是一款以 DSP 架構(gòu)為基礎(chǔ)的視覺處理器,在視覺相關(guān)的應(yīng)用領(lǐng)域有極高的能耗比,可以將視覺計算普及到幾乎所有的嵌入式系統(tǒng)中。
該芯片已被大量應(yīng)用在 Google 3D 項目的 Tango 手機、大疆無人機、 FLIR 智能紅外攝像機、海康深眸系列攝像機、華睿智能工業(yè)相機等產(chǎn)品中。
IBM
IBM 很早以前就發(fā)布過 watson,投入了很多的實際應(yīng)用。除此之外,還啟動了類腦芯片的研發(fā), 即 TrueNorth。TrueNorth 是 IBM 參與 DARPA 的研究項目 SyNapse 的最新成果。
SyNapse 全稱是Systems of Neuromorphic Adaptive Plastic Scalable Electronics(自適應(yīng)可塑可伸縮電子神經(jīng)系統(tǒng),而 SyNapse 正好是突觸的意思),其終極目標(biāo)是開發(fā)出打破馮·諾依曼體系結(jié)構(gòu)的計算機體系結(jié)構(gòu)。
ARM
ARM 推出全新芯片架構(gòu) DynamIQ,通過這項技術(shù), AI 芯片的性能有望在未來三到五年內(nèi)提升 50 倍。
ARM的新CPU架構(gòu)將會通過為不同部分配置軟件的方式將多個處理核心集聚在一起,這其中包括一個專門為 AI 算法設(shè)計的處理器。芯片廠商將可以為新處理器配置最多 8 個核心。同時為了能讓主流 AI 在自己的處理器上更好地運行, ARM 還將推出一系列軟件庫。
CEVA
CEVA 是專注于 DSP 的 IP 供應(yīng)商,擁有眾多的產(chǎn)品線。其中,圖像和計算機視覺 DSP產(chǎn)品 CEVA-XM4是第一個支持深度學(xué)習(xí)的可編程 DSP,而其發(fā)布的新一代型號 CEVA-XM6,具有更優(yōu)的性能、更強大的計算能力以及更低的能耗。CEVA 指出,智能手機、汽車、安全和商業(yè)應(yīng)用,如無人機、自動化將是其業(yè)務(wù)開展的主要目標(biāo)。
MIT/Eyeriss
Eyeriss 事實上是 MIT 的一個項目,還不是一個公司, 從長遠(yuǎn)來看,如果進展順利,很可能孵化出一個新的公司。Eyeriss 是一個高效能的深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器硬件,該芯片內(nèi)建 168 個核心,專門用來部署神經(jīng)網(wǎng)路(neural network),效能為一般 GPU 的 10 倍。其技術(shù)關(guān)鍵在于最小化 GPU 核心和記憶體之間交換數(shù)據(jù)的頻率(此運作過程通常會消耗大量的時間與能量):一般 GPU 內(nèi)的核心通常共享單一記憶體,但 Eyeriss 的每個核心擁有屬于自己的記憶體。
目前, Eyeriss 主要定位在人臉識別和語音識別,可應(yīng)用在智能手機、穿戴式設(shè)備、機器人、自動駕駛車與其他物聯(lián)網(wǎng)應(yīng)用裝置上。
蘋果
在 iPhone 8 和 iPhone X 的發(fā)布會上,蘋果明確表示其中所使用的 A11 處理器集成了一個專用于機器學(xué)習(xí)的硬件——“神經(jīng)網(wǎng)絡(luò)引擎(Neural Engine) ”, 每秒運算次數(shù)最高可達(dá)6000 億次。這塊芯片將能夠改進蘋果設(shè)備在處理需要人工智能的任務(wù)時的表現(xiàn),比如面部識別和語音識別等。
三星
2017 年,華為海思推出了麒麟 970 芯片,據(jù)知情人士透露,為了對標(biāo)華為,三星已經(jīng)研發(fā)了許多種類的人工智能芯片。 三星計劃在未來三年內(nèi)新上市的智能手機中都采用人工智能芯片,并且他們還將為人工智能設(shè)備建立新的組件業(yè)務(wù)。三星還投資了 Graphcore、深鑒科技等人工智能芯片企業(yè)。
3、技術(shù)趨勢
目前主流 AI 芯片的核心主要是利用 MAC(Multiplier and Accumulation, 乘加計算) 加速陣列來實現(xiàn)對 CNN(卷積神經(jīng)網(wǎng)絡(luò))中最主要的卷積運算的加速。這一代 AI 芯片主要有如下 3 個方面的問題。
(1)深度學(xué)習(xí)計算所需數(shù)據(jù)量巨大,造成內(nèi)存帶寬成為整個系統(tǒng)的瓶頸,即所謂“memory wall” 問題。
(2)與第一個問題相關(guān), 內(nèi)存大量訪問和 MAC陣列的大量運算,造成 AI芯片整體功耗的增加。
(3)深度學(xué)習(xí)對算力要求很高,要提升算力,最好的方法是做硬件加速,但是同時深度學(xué)習(xí)算法的發(fā)展也是日新月異,新的算法可能在已經(jīng)固化的硬件加速器上無法得到很好的支持,即性能和靈活度之間的平衡問題。
因此,可以預(yù)見下一代 AI 芯片將有如下的五個發(fā)展趨勢。
(1)更高效的大卷積解構(gòu)/復(fù)用
在標(biāo)準(zhǔn) SIMD 的基礎(chǔ)上, CNN 由于其特殊的復(fù)用機制,可以進一步減少總線上的數(shù)據(jù)通信。而復(fù)用這一概念,在超大型神經(jīng)網(wǎng)絡(luò)中就顯得格外重要。 如何合理地分解、 映射這些超大卷積到有效的硬件上成為了一個值得研究的方向,
(2)更低的 Inference 計算/存儲位寬
AI 芯片最大的演進方向之一可能就是神經(jīng)網(wǎng)絡(luò)參數(shù)/計算位寬的迅速減少——從 32 位浮點到 16 位浮點/定點、 8 位定點,甚至是 4 位定點。在理論計算領(lǐng)域, 2 位甚至 1 位參數(shù)位寬,都已經(jīng)逐漸進入實踐領(lǐng)域。
(3)更多樣的存儲器定制設(shè)計
當(dāng)計算部件不再成為神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計瓶頸時,如何減少存儲器的訪問延時將會成為下一個研究方向。通常,離計算越近的存儲器速度越快,每字節(jié)的成本也越高,同時容量也越受限,因此新型的存儲結(jié)構(gòu)也將應(yīng)運而生。
(4)更稀疏的大規(guī)模向量實現(xiàn)
神經(jīng)網(wǎng)絡(luò)雖然大,但是,實際上有很多以零為輸入的情況, 此時稀疏計算可以高效的減少無用能效。來自哈佛大學(xué)的團隊就該問題提出了優(yōu)化的五級流水線結(jié),在最后一級輸出了觸發(fā)信號。在 Activation層后對下一次計算的必要性進行預(yù)先判斷,如果發(fā)現(xiàn)這是一個稀疏節(jié)點,則觸發(fā) SKIP 信號,避免乘法運算的功耗,以達(dá)到減少無用功耗的目的。
(5)計算和存儲一體化
計算和存儲一體化(process-in-memory)技術(shù),其要點是通過使用新型非易失性存儲(如 ReRAM)器件,在存儲陣列里面加上神經(jīng)網(wǎng)絡(luò)計算功能,從而省去數(shù)據(jù)搬移操作,即實現(xiàn)了計算存儲一體化的神經(jīng)網(wǎng)絡(luò)處理,在功耗性能方面可以獲得顯著提升。
結(jié)尾:
近幾年,AI技術(shù)不斷取得突破性進展。作為AI技術(shù)的重要物理基礎(chǔ),AI芯片擁有巨大的產(chǎn)業(yè)價值和戰(zhàn)略地位。
但從大趨勢來看,目前尚處于AI芯片發(fā)展的初級階段,無論是科研還是產(chǎn)業(yè)應(yīng)用都有巨大的創(chuàng)新空間。
現(xiàn)在不僅英偉達(dá)、谷歌等國際巨頭相繼推出新產(chǎn)品,國內(nèi)百度、阿里等紛紛布局這一領(lǐng)域,也誕生了寒武紀(jì)等AI芯片創(chuàng)業(yè)公司。
在CPU、GPU等傳統(tǒng)芯片領(lǐng)域與國際相差較多的情況下,中國AI芯片被寄望能實現(xiàn)彎道超車。